4763 Mechanics 3

1 (i)	$\begin{aligned} \frac{1}{2} m\left(v^{2}-1.4^{2}\right) & =m \times 9.8(2.6-2.6 \cos \theta) \\ v^{2}-1.96 & =50.96-50.96 \cos \theta \\ v^{2} & =52.92-50.96 \cos \theta \end{aligned}$	$\begin{array}{lll} \hline \text { M1 } & \\ \text { A1 } & \\ & \\ \text { E1 } & \\ & 3 \end{array}$	Equation involving KE and PE
(ii)	$\begin{aligned} 0.65 \times 9.8 \cos \theta-R & =0.65 \times \frac{v^{2}}{2.6} \\ 6.37 \cos \theta-R & =0.25(52.92-50.96 \cos \theta) \\ 6.37 \cos \theta-R & =13.23-12.74 \cos \theta \\ R & =19.11 \cos \theta-13.23 \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Radial equation involving v^{2} / r Substituting for v^{2} Dependent on previous M1 Special case: $R=13.23-19.11 \cos \theta$ earns M1A0M1SC1
(iii)	Leaves surface when $R=0$ $\begin{aligned} & \cos \theta=\frac{13.23}{19.11}\left(=\frac{9}{13}\right) \quad\left(\theta=46.19^{\circ}\right) \\ & v^{2}=52.92-50.96 \times \frac{9}{13} \end{aligned}$ Speed is $4.2 \mathrm{~ms}^{-1}$	$\begin{array}{ll}\text { M1 } & \\ \text { A1 } \\ \text { M1 } & \\ \text { A1 } & \\ & 4\end{array}$	```(ft if R=a+b\operatorname{cos}0\mathrm{ and 0<-- }b<1) Dependent on previous M1```
(iv)	$\begin{aligned} & T \sin \alpha+R \cos \alpha=0.65 \times 9.8 \\ & T \cos \alpha-R \sin \alpha=0.65 \times \frac{1.2^{2}}{2.4} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Resolving vertically (3 terms) Horiz eqn involving v^{2} / r or $r \omega^{2}$
	$\begin{array}{rrr}\text { OR } T-m g \sin \alpha=m\left(\frac{1.2^{2}}{2.4}\right) \cos \alpha & \text { M1A1 } \\ m g \cos \alpha-R=m\left(\frac{1.2^{2}}{2.4}\right) \sin \alpha & \text { M1A1 }\end{array}$		
	$\sin \alpha=\frac{2.4}{2.6}=\frac{12}{13}, \quad \cos \alpha=\frac{5}{13} \quad\left(\alpha=67.38^{\circ}\right)$ Tension is 6.03 N Normal reaction is 2.09 N	$\left\lvert\, \begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \mathbf{8} \end{array}\right.$	Solving to obtain a value of T or R Dependent on necessary M1s (Accept 6, 2.1) Treat $\omega=1.2$ as a misread, leading to $T=6.744, R=0.3764$ for $7 / 8$

2 (i)	$\frac{1}{2} \times 5000 x^{2}=\frac{1}{2} \times 400 \times 3^{2}$ Compression is 0.849 m	M1 A1 A1 3	Equation involving EE and KE Accept $\frac{3 \sqrt{2}}{5}$
(ii)	Change in PE is $400 \times 9.8 \times(7.35+1.4) \sin \theta$ $\begin{aligned} & =400 \times 9.8 \times 8.75 \times \frac{1}{7} \\ & =4900 \mathrm{~J} \end{aligned}$ Change in EE is $\frac{1}{2} \times 5000 \times 1.4^{2}$ $=4900 \mathrm{~J}$ Since Loss of $P E=$ Gain of $E E$, car will be at rest	M1 A1 M1 E1	Or $400 \times 9.8 \times 1.4 \sin \theta$ and $\frac{1}{2} \times 400 \times 4.54^{2}$ Or 784+4116 M1M1A1 can also be given for a correct equation in x (compression): $2500 x^{2}-560 x-4116=0$ Conclusion required, or solving equation to obtain $x=1.4$
(iii)	WD against resistance is $7560(24+x)$ Change in EE is $\frac{1}{2} \times 5000 x^{2}$ Change in KE is $\frac{1}{2} \times 400 \times 30^{2}$ Change in PE is $400 \times 9.8 \times(24+x) \times \frac{1}{7}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	$\begin{aligned} & (=181440+7560 x) \\ & \left(=2500 x^{2}\right) \\ & (=180000) \\ & (=13440+560 x) \end{aligned}$
	OR Speed $7.75 \mathrm{~m} \mathrm{~s}^{-1}$ when it hits buffer, then WD against resistance is $7560 x$ B1 Change in EE is $\frac{1}{2} \times 5000 x^{2}$ Change in KE is $\frac{1}{2} \times 400 \times 7.75^{2}$ Change in PE is $400 \times 9.8 \times x \times \frac{1}{7}$		$\begin{aligned} & \left(=2500 x^{2}\right) \\ & (=12000) \\ & (=560 x) \end{aligned}$
	$\begin{aligned} -7560(24+x)= & \frac{1}{2} \times 5000 x^{2}-\frac{1}{2} \times 400 \times 30^{2} \\ & -400 \times 9.8 \times(24+x) \times \frac{1}{7} \\ -7560(24+x)= & 2500 x^{2}-180000-560(24+x) \\ -3.024(24+x)= & x^{2}-72-0.224(24+x) \\ x^{2}+2.8 x-4.8= & 0 \\ x= & \frac{-2.8+\sqrt{2.8^{2}+19.2}}{2} \\ = & 1.2 \end{aligned}$	M1 F1 M1 A1 M1 A1 10	Equation involving WD, EE, KE, PE Simplification to three term quadratic

3(a)(i)	$\begin{aligned} & {[\text { Velocity }]=\mathrm{L} \mathrm{~T}^{-1}} \\ & {[\text { Force }]=\mathrm{ML} \mathrm{~T}^{-2}} \\ & {[\text { Density }]=\mathrm{ML}^{-3}} \end{aligned}$	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } \\ \text { B1 } & 3 \end{array}$	Deduct 1 mark for ms^{-1} etc
(ii)	$\begin{aligned} & \mathrm{MLT}^{-2}=\left(\mathrm{ML}^{-3}\right)^{\alpha}\left(\mathrm{LT}^{-1}\right)^{\beta}\left(\mathrm{L}^{2}\right)^{\gamma} \\ & \alpha=1 \\ & \beta=2 \\ & -3 \alpha+\beta+2 \gamma=1 \\ & \gamma=1 \end{aligned}$	B1 B1 M1A1 A1	(ft if equation involves α, β and γ)
(b)(i)	$\begin{aligned} \frac{2 \pi}{\omega} & =4.3 \\ \omega & =\frac{2 \pi}{4.3} \quad(=1.4612) \end{aligned}$	M1 A1	
	$\dot{\theta}^{2}=1.4612^{2}\left(0.08^{2}-0.05^{2}\right)$ Angular speed is $0.0913 \mathrm{rads}^{-1}$	M1 F1 A1 5	Using $\omega^{2}\left(A^{2}-\theta^{2}\right)$ For RHS (b.o.d. for $v=0.0913 \mathrm{~m} \mathrm{~s}^{-1}$)
	$\begin{aligned} \text { OR } \dot{\theta} & =0.08 \omega \cos \omega t \\ & =0.08 \times 1.4612 \cos 0.6751 \\ & =0.0913 \end{aligned}$		$\begin{aligned} \text { Or } \dot{\theta} & =(-) 0.08 \omega \sin \omega t \\ & =(-) 0.08 \times 1.4612 \sin 0.8957 \end{aligned}$
(ii)	$\theta=0.08 \sin \omega t$ When $\theta=0.05,0.08 \sin \omega t=0.05$ $\begin{aligned} \omega t & =0.6751 \\ t & =0.462 \end{aligned}$ Time taken is 2×0.462 $=0.924 \mathrm{~s}$	B1 M1 A1 cao M1 A1 cao	or $\theta=0.08 \cos \omega t$ Using $\theta=(\pm) 0.05$ to obtain an equation for t B1M1 above can be earned in (i) or $t=0.613$ from $\theta=0.08 \cos \omega t$ or $t=1.537$ from $\theta=0.08 \cos \omega t$ Strategy for finding the required time $\left(2 \times 0.462 \text { or } \frac{1}{2} \times 4.3-2 \times 0.613\right.$ or 1.537-0.613) Dep on first M1 For $\theta=0.05 \sin \omega t, \max$ BOM1AOMO (for $0.05=0.05 \sin \omega t)$

\begin{tabular}{|c|c|c|c|c|}
\hline 4 (a) \& \& M1
A1
M1
M1
A1

A1
M1
A1
A1

A1 \& 9 \& | Integration by parts |
| :--- |
| For $x e^{x}-\mathrm{e}^{x}$ |
| ww full marks (B4) Give B3 for 0.65 |
| For integral of $\left(\mathrm{e}^{x}\right)^{2}$ |
| For $\frac{1}{4} \mathrm{e}^{2 x}$ |
| If area wrong, SC1 for $\bar{x}=\frac{3 \ln 3-2}{\text { area }} \text { and } \bar{y}=\frac{2}{\text { area }}$ |

\hline (b)(i) \& Volume is

$$
\begin{aligned}
\mathrm{s} \int \pi y^{2} \mathrm{~d} x & =\int_{2}^{a} \pi \frac{36}{x^{4}} \mathrm{~d} x \\
& =\pi\left[-\frac{12}{x^{3}}\right]_{2}^{a}=\pi\left(\frac{3}{2}-\frac{12}{a^{3}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \int \pi x y^{2} \mathrm{~d} x=\int_{2}^{a} \pi \frac{36}{x^{3}} \mathrm{~d} x \\
& \quad=\pi\left[-\frac{18}{x^{2}}\right]_{2}^{a}=\pi\left(\frac{9}{2}-\frac{18}{a^{2}}\right) \\
& \bar{x}=\frac{\int \pi x y^{2} \mathrm{~d} x}{\int \pi y^{2} \mathrm{~d} x} \\
& =\frac{\pi\left(\frac{9}{2}-\frac{18}{a^{2}}\right)}{\pi\left(\frac{3}{2}-\frac{12}{a^{3}}\right)}=\frac{3\left(a^{3}-4 a\right)}{a^{3}-8}
\end{aligned}
$$ \& M1 $\begin{aligned} & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { E1 }\end{aligned}$ \& 6 \& π may be omitted throughout

\hline (ii) \& | Since $a>2, \quad 4 a>8$ |
| :--- |
| so $a^{3}-4 a<a^{3}-8$ |
| Hence $\bar{x}=\frac{3\left(a^{3}-4 a\right)}{a^{3}-8}<3$ |
| i.e. CM is less than 3 units from O | \& A1 \& \& | Condone \geq instead of $>$ throughout |
| :--- |
| Fully acceptable explanation Dependent on M1A1 |

\hline \& | OR As $a \rightarrow \infty, \bar{x}=\frac{3\left(1-4 a^{-2}\right)}{1-8 a^{-3}} \rightarrow 3 \quad$ M1A1 |
| :--- |
| Since \bar{x} increases as a increases, \bar{x} is less than 3 | \& \& \& Accept $\bar{x} \approx \frac{3 a^{3}}{a^{3}} \rightarrow 3$, etc (M1 for $\bar{x} \rightarrow 3$ stated, but A1 requires correct justification)

\hline
\end{tabular}

